Loren Data's SAM Daily™

fbodaily.com
Home Today's SAM Search Archives Numbered Notes CBD Archives Subscribe
SAMDAILY.US - ISSUE OF APRIL 26, 2024 SAM #8186
SPECIAL NOTICE

99 -- TECHNOLOGY TRANSFER OPPORTUNITY: Large Area Structural Damage Nondestructive Evaluation (LAR-TOPS-247)

Notice Date
4/24/2024 1:06:44 PM
 
Notice Type
Special Notice
 
NAICS
927110 — Space Research and Technology
 
Contracting Office
NASA LANGLEY RESEARCH CENTER HAMPTON VA 23681 USA
 
ZIP Code
23681
 
Solicitation Number
T2P-LaRC-00154
 
Response Due
4/24/2025 2:00:00 PM
 
Archive Date
05/09/2025
 
Point of Contact
NASA�s Technology Transfer Program
 
E-Mail Address
Agency-Patent-Licensing@mail.nasa.gov
(Agency-Patent-Licensing@mail.nasa.gov)
 
Description
NASA�s Technology Transfer Program solicits inquiries from companies interested in obtaining license rights to commercialize, manufacture and market the following technology. License rights may be issued on an exclusive or nonexclusive basis and may include specific fields of use.�NASA provides no funding in conjunction with these potential licenses. THE TECHNOLOGY: When testing composite structures, it is important to understand the response of the structure to the load. Of significance is the formation of damage and growth of that damage leading to ultimate failure. Understanding how a structure fails allows for optimal designs for improved safety and performance for the part during its life cycle. Inspection methods are required to determine damage initiation and growth in advanced composite structures during loading. Past methods for in-situ inspection of composite structures during loading have involved acoustic emission, passive thermography, digital image correlation, and fiber optics techniques. However, each of these has critical limitations. The combination of thermal and acoustic emission (AE) nondestructive evaluation (NDE) techniques, by mapping the acoustic emission events onto the thermal imagery, provides a very sensitive measurement system for detecting damage formation and growth. This technology provides a methodology to measure damage onset and grow at multiple locations in a composite structure during fatigue loading. The thermography inspection is non-contact and can cover very large areas. The acoustic emission sensors require contact at only the sensor attachment points and can cover large areas. The acoustic emission measurement is very sensitive to damage formation events such as matrix cracking, fiber breaks, and delamination, however the event location is approximate. An infrared camera is able to detect damage growth and location at areas of heating (due to fiber breaks, rubbing of disbond areas and matrix cracks) and thus confirm the acoustic emission measurements. If the loading is cyclic the infrared camera is also able to detect the relative depth of the damage. Combining both technologies helps to reduce false indications, confirm damage growth areas and where ultimate failure will occur. This provides a measurement capability to detect growing damage (location and size) for improved structures testing or during in-service applications. Multiple infrared (IR) cameras and multiple acoustic emission sensors can be employed internally or externally for full coverage of the structure. When significant damage growth is detected, the structure can be taken out of service for repair or for further inspections. This technology has been demonstrated for structures testing. In-situ NDE inspections are necessary to provide structural engineers a tool to incrementally control and document damage growth as a function of fatigue cycles before failure. This allows for the comparison of NDE results to develop and validate progressive damage analysis (PDA) models. The ultimate goal is to use the validated PDA models to decrease the time required to certify composite structures and therefore save development costs. Real time NDE can document the progression of damage and provide the documentation of ultimate failure mechanisms. To express interest in this opportunity, please submit a license application through NASA�s Automated Technology Licensing Application System (ATLAS) by visiting�https://technology.nasa.gov/patent/LAR-TOPS-247 If you have any questions, please e-mail NASA�s Technology Transfer Program at�Agency-Patent-Licensing@mail.nasa.gov�with the title of this Technology Transfer Opportunity as listed in this SAM.gov notice and your preferred contact information. For more information about licensing other NASA-developed technologies, please visit the NASA Technology Transfer Portal at�https://technology.nasa.gov/ These responses are provided to members of NASA�s Technology Transfer Program for the purpose of promoting public awareness of NASA-developed technology products, and conducting preliminary market research to determine public interest in and potential for future licensing opportunities.�No follow-on procurement is expected to result from responses to this Notice.
 
Web Link
SAM.gov Permalink
(https://sam.gov/opp/3fcc92222aa341dfbeb02cb21b7612ab/view)
 
Record
SN07040934-F 20240426/240424230045 (samdaily.us)
 
Source
SAM.gov Link to This Notice
(may not be valid after Archive Date)

FSG Index  |  This Issue's Index  |  Today's SAM Daily Index Page |
ECGrid: EDI VAN Interconnect ECGridOS: EDI Web Services Interconnect API Government Data Publications CBDDisk Subscribers
 Privacy Policy  Jenny in Wanderland!  © 1994-2024, Loren Data Corp.