SPECIAL NOTICE
99 -- TECHNOLOGY TRANSFER OPPORTUNITY: Cavity Noise Reduction Technology (LAR-TOPS-44)
- Notice Date
- 10/12/2023 1:17:54 PM
- Notice Type
- Special Notice
- NAICS
- 927110
— Space Research and Technology
- Contracting Office
- NATIONAL AERONAUTICS AND SPACE ADMINISTRATION US
- ZIP Code
- 00000
- Solicitation Number
- T2P-LaRC-00133
- Response Due
- 10/12/2024 2:00:00 PM
- Archive Date
- 10/27/2024
- Point of Contact
- NASA�s Technology Transfer Program
- E-Mail Address
-
Agency-Patent-Licensing@mail.nasa.gov
(Agency-Patent-Licensing@mail.nasa.gov)
- Description
- NASA�s Technology Transfer Program solicits inquiries from companies interested in obtaining license rights to commercialize, manufacture and market the following technology. License rights may be issued on an exclusive or nonexclusive basis and may include specific fields of use.�NASA provides no funding in conjunction with these potential licenses. THE TECHNOLOGY: NASA's Langley Research Center researchers have developed a landing gear cavity modification that reduces noise produced during aircraft approach and landing. The modification is an innovative stretchable mesh assembly that deploys and retracts with the landing gear to reduce high intensity low- to mid-frequency airframe noise. The envisioned low profile mesh concept enables mitigation of cavity noise without sealing of the cavity or incurring appreciable penalties of increased weight and conforms easily and smoothly to the interior edges of an aircraft wheel well. The concept is potentially suitable for retrofit of current aircraft and for inclusion into future civil transport fleets, and causes no adverse effects to the aerodynamic characteristics of the aircraft. The technology has been validated in wind tunnel testing. NASA is seeking partners who are interested in co-development or licensure of the technology for a variety of applications. Attached to the interior edges of the wheel well and covering the entire cavity opening, the stretchable mesh promotes growth of three-dimensional flow structures within the free shear layer. The fine flow structures generated by the mesh effectively reduce shear layer roll-up and eliminate span-wise coherence of the large-scale flow structures immediately downstream of the landing gear cavity leading edge that generate cavity noise. Consequently, the generation of high amplitude acoustic waves and subsequent cavity resonance is significantly diminished. The mesh has been tested in a high fidelity 18% scale model in NASA Langley Research Centers 14- by 22-Foot Subsonic Wind Tunnel. Measurements of acoustic far field noise were collected using a phased microphone array. The stretchable mesh concept is able to reduce the gear cavity noise in excess of one to three decibels from 100-500 Hz, and by about one decibel in the 500-800 Hz range. Sound reduction efficacy of the stretchable mesh construct was compared with rigid mesh and the stretchable mesh has proven more effective in landing gear cavity noise reduction. Determination of a final embodiment of the stretchable mesh will require design and optimization of the cavity mesh support and attachment fixtures. Further considerations of cost, manufacturability, and maintainability are forthcoming. To express interest in this opportunity, please submit a license application through NASA�s Automated Technology Licensing Application System (ATLAS) by visiting�https://technology.nasa.gov/patent/LAR-TOPS-44 If you have any questions, please e-mail NASA�s Technology Transfer Program at�Agency-Patent-Licensing@mail.nasa.gov�with the title of this Technology Transfer Opportunity as listed in this SAM.gov notice and your preferred contact information. For more information about licensing other NASA-developed technologies, please visit the NASA Technology Transfer Portal at�https://technology.nasa.gov/ These responses are provided to members of NASA�s Technology Transfer Program for the purpose of promoting public awareness of NASA-developed technology products, and conducting preliminary market research to determine public interest in and potential for future licensing opportunities.�No follow-on procurement is expected to result from responses to this Notice.
- Web Link
-
SAM.gov Permalink
(https://sam.gov/opp/72061cc483f84b73a22fb2bdafac40c3/view)
- Record
- SN06857979-F 20231014/231012230047 (samdaily.us)
- Source
-
SAM.gov Link to This Notice
(may not be valid after Archive Date)
| FSG Index | This Issue's Index | Today's SAM Daily Index Page |